

Defense Sciences Office

Dr. Stefanie Tompkins

June 19, 2014

Defense Sciences Office

Who we are:

- A collaborative team of diverse, opportunistic technology entrepreneurs
- "DARPA's DARPA" office that creates DoD opportunity from fundamental scientific discovery
- Informed, but not constrained, by current trends and conflicts

What we do:

- Invest in multiple, often disparate, scientific disciplines
- Reshape existing fields or create entirely new disciplines (sometimes when the payoff to DoD may not be fully understood)
- Harvest and accelerate the development of promising breakthroughs to create enabling technologies for broad impact against national security challenges

What we don't do:

- Large systems, where the risk is primarily engineering or integration
- Incremental research DSO primarily focuses on pivotal, early stage investment in high risk opportunities

The Nation's first line of defense against scientific surprise

DARPA DSO Office History

DSO Contributions to Materials Science

Solid Oxide Fuel Cells (SOFC) Timeline

Thermally self sustaining breadboard

First ever portable SOFC system

SOFC Stalker XE240

DARPA STTR

SOFC powered UAV and UGV demonstrations

Microtubule **SOFCs**

Cold Atom Sensor Development

National Security Challenges

- Diverse threats: Expanding military missions in widely varying environments demand a level of customization that we do not have
- Speed of change: Globally available technology is moving more quickly than we typically react
- Complex systems: Unsustainable cost of military systems limits adaptability, choice, and incorporation of new technology
- Erosion of boundaries: Weapons of terror and potential proliferation of WMD technology affect both war and peace, home and abroad

DARPA Key questions we in DSO are considering

- Diversity: Can we rapidly accelerate scientific discovery and innovation?
- Speed: Can we remove technology barriers to rapid or low volume acquisition? Can we create new capabilities quickly, to respond or adapt to unpredictable threats?
- Complexity: Can we harness complexity in the systems we build? Can we quantify and manage uncertainty and risk for robust, less costly systems?
- Erosion of boundaries: Can we enable reliable and timely detection and management of CBRNE threats?

DARPA Bubbling Technology Opportunities

???

(Tell us what you think they are)

DARPA Types of Programs

Foundations	Tools	Integrated Demonstrations
 Monitor and explore scientific frontiers across multiple disciplines to create new communities and capabilities Mostly measurement and theory 	 Exploit discoveries to develop tools Translate capability from within a research community to outsiders Increased focus on use cases and potential CONOPS 	 Bring together multiple lines of research into a new capability, outside the laboratory Often opportunistic, and/or driven by specific DoD needs

Transformative Materials

Decoupling and control of countervailing material properties; design and fabrication of new materials across multiple length scales

© Robert Llewellyn/Corbis

Physical Sciences

Exploration of scientific breakthroughs and boundaries that enable unique capabilities for national security

Supervised Autonomy

Development of theory, tools, and components to enable extended autonomous activity in unstructured, infrastructure-poor environments

Mathematics

Development of advanced mathematics and modeling tools

Novel Sensing and Detection

New approaches to sensing and detecting CBRNE materials and devices

© 2007 Ned Batchelde

Complexity

Exploration of the science of complexity, and its application to new engineering paradigms

DARPA Three ways to engage with DSO

Talk to a Program Manager (PM)

- PM sidebars tomorrow
- Email/phone/face to face throughout the year

Submit ideas to the DSO Office-Wide BAA (BAA-14-46)

Respond to DSO program BAAs

 $\textbf{Concepts} \rightarrow \textbf{New Ideas}$

Seedlings: Disbelief → "Mere" Doubt

Programs: Possibility → Capability

DARPA Heilmeier Catechism

- What are we trying to do?
- How does this get done, at present?
- What is new about our approach?
- If we succeed, what difference do we think it will make?
- How long do we think it will take?
- Can we transition?
- How much will it cost?

Program Managers

Fariba Fahroo Mathematics

Mark Micire Robotics

James Gimlett Physics

Judah Goldwasser Structural Materials

Doran Michels Ground Combat Systems

Michael Maher Materials and Manufacturing

Gill Pratt Robotics and Neuromorphic Systems

John Main Material System Innovation

Tyler McQuade Chemistry

Prem Kumar Quantum and Nonlinear Optics

Reza Ghanadan Complexity Science Distribution Statement "A" (Approved for Public Release, Distribution Unlimited)

Vincent Tang **Applied Physics**

We look forward to your ideas.